
Types and Type Checking
(What is it good for?)

Stephen Chang
Racket Summer School 2018

(Thursday morning)

A quick survey

?

The Holy Grail of PL Research …

… is to predict behavior of programs
(without running them)

Prevent bugs Avoid malware Prove equivalence

(one of)

Abandon all hope?

“All non-trivial, semantic properties

of programs are undecidable”

--- Rice’s theorem

Enter … Type Systems

“A lightweight, syntactic analysis
that approximates program behavior”

Validate function arguments

(Prevent bugs)
Check memory safety

(Avoid malware)
Verify program properties

(Prove equivalence)

Typed Languages

Reader / Lexer / Parser

Type Checker

Compiler (includes
macro expander)

Surface code

AST (e.g., syntax objects)

Checked AST

Core code / bytecode / machine code

Yesterday

Today

How to create typed languages?

1. Incorporate types into the grammar.
2. Come up with a language of types.
3. Develop type rules for each language construct.
4. Implement a type checker.

1. Incorporate types into the grammar

How to create typed languages?

2. Come up with language of types

How to create typed languages?

Specifying Type Systems: Inference
Rules

IF:

Premise 1

Premise 2
Premise 3

ConclusionTHEN:

3. Develop type rules for each language construct.

If type systems were a video game …

IF:

THEN:

Type Judgements

“It is true, that expression e has type τ”

3. Develop rules for each language construct

How to create typed languages?

A rule for string literals

“It is true, that string literals have type String”

Function Application Type Rule

� �� ���

� ��

� � ���

“If: it is true, that expression e1 has type ��� → ����”
“and e2 has type ���”

“Then: it is true that e1 e2 has type ����”

If Type Rule

�

�

� �

Plus type rule

�

�

� �

Variables?

A variable’s meaning depends on its context

Variables : Type depends on context

Context (or Type Environment)

“In context Γ, x has type τ”

Γ = � ∶ �, …

Type rule for lambda functions

�� ���

�� �� ���

“In context Γ, extended with
x, which has type τin, e has type τout”

From Type System … to Type Checking

These type rules say nothing about how to check types,
i.e., they are not an algorithm

If rule: a specification

�

�

� �

IF: e1 has type Bool, and e2 has type τ, and e3 has type τ
THEN: if e1 e2 e3 has type τ

If rule: a checking algorithm

1. Compute e1’s type: τ1
2. Check that τ1 is Bool
3. Compute e2’s type: τ2
4. Compute e3’s type: τ3
5. Check that e2’s type equals

e3’s type
6. Assign (if e1 e2 e3) e2’s

type

� � �

� �

 �

� �
 �

“Bidirectional” judgements: better for
specifying algorithms

⇐ = “check” the type

⇒ = “compute” the type

A bidirectional If rule

1. Check that e1 has type Bool
2. Compute e2’s type as τ
3. Check that e3 has type τ
4. Assign (if e1 e2 e3) type τ

�

�

� �

“Bidirectional” judgements

⇐ = “check” the type

⇒ = “compute” the type

But now we have two judgements!

Another bidirectional If rule

1. Check that e1 has type Bool
2. Compute e2’s type as τ
3. Check that e3 has type τ
4. Assign (if e1 e2 e3) type τ

�

�

� �

LAB, part 1

• Develop bidirectional rules for our language. Focus on the
expressions first.

• It might help to first review the “conventional” type rules.
• Make sure to come up with both “check” and “compute”

versions of the bidirectional rules.

LAB, part 2

• Use your rules to implement a “compute” type checking
function.

