Types and Type Checking
(What Is 1t good for?)

Stephen Chang
Racket Summer School 2018

(Thursday morning)

A quick survey

F'FfeF=f '+F1A11(X<:S)T—R FFeeU=¢
X| >0 XNFV(S)=10 'FA<S THFU< [A/XT
VB. ('FB<:S and T'HU<: [B/X]T imply I'F [A/X]R<: [B/X|R)
['Ff() € [A/X]R = £'[A] (€¥)

(App-InfSpec)

?

The Holy Gralil of PL Research .. .(oneof

... Is to predict behavior of programs
(without running them)

Prevent bugs Avoid malware Prove equivalence

Abandon all hope?

“All non-trivial, semantic properties
of programs are undecidable”
—- Rice’s theorem

Enter ... Type Systems

“A lightweight, syntactic analysis
that approximates program behavior”

Typed
Racket

Validate function arguments Check memory safety Verity program properties
(Prevent bugs) (Avoid malware) (Prove equivalence)

Typed Languages

Surface code

Reader / Lexer / Parser Yesterday
AST (e.g., syntax objects)
Type Checker Today

Checked AST
Compiler (includes

macro expander)

Core code / bytecode / machine code

How to create typed languages®?

Incorporate types into the grammarr.

Come up with a language of types.

Develop type rules for each language construct.
Implement a type checker.

= L =

How to create typed languages?

1. Incorporate types into the grammar

(define-
function (Variable |[Variable : Typel|...) |: Type|Expression)

Definition

Expression (function-application Expression Expression ...)

(A ([x : Typel ...) Expression)

|

| (if Expression Expression Expression)
| (+ Expression Expression)

| Variable

| Number

| Boolean

| String

How to create typed languages?
2. Come up with language of types

Type = (-> Type ...)
| Number
| Boolean

| String

Specifying Type Systems: Inference

3. Develop type ru$es for each language construct.

Premise 1

IE: Premise 2
Premise 3

THEN: Conclusion

{irom “Tha Legend of Zeida
Farm Farmas)
e

e by
Ko Koo

If type systems were a video game ... o

Type Judgements

—e: T

“It Is true, that expression e has type 1’

How to create typed languages?

3. Develop rules for each language construct

(define-
function (Variable [Variable : Typel] ...) : Type Expression)

Definition

Expression (function-application Expression Expression ...)
(A ([x : Typel ...) Expression)
(if Expression Expression Expression)

(+ Expression Expression)

Number
Boolean

|
|
|
| variable
|
|
|

String

A rule for string literals

F < string > : String

“It Is true, that string literals have type String”

Function Application Type Rule

“If: It Is true, that expression el has type t;,, = Tyt
“and e2 has type t;,”

- €1 Tin = Tout

Feq1er: Tout

“Then: it is true that e1 e2 has type t,,;”

If Type Rule

- e, : Bool
|—82:T |_83:T
Fifelezegz'l-

Plus type rule

Feq @ Int
e, : Int
e+ e, :Int

Variables?

Fox 777

A variable’s meaning depends on its context

Song Of Storms
(Fcn T Logecea Zoida™ Gar f Tma™

Song Of Storms
rom o Lagem of Zpsa™ Ot Ta™)

==

Variables : Type depends on context

“In context I', x has type 17

'x) =1
'Fx: 1

Context (or Type Environment)

[=x:1,..

Type rule for lambda functions

“In context I, extended with
X, which has type Tin, e has type tout”

I,x:tip B et Toyut

' Ax:Tj.€ ¢ Tin = Tout

From Type System ... to Type Checking

These type rules say nothing about how to check types,
l.e., they are not an algorithm

If rule: a specification

- e, : Bool
|—32:T |‘€3:T
Fifejeye;: T

IF: el has type Bool, and e2 has type 1, and e3 has type 1
THEN: if el e2 e3 has type T

If rule: a checking algorithm

- €1 -T1| [T1 = BOOl

|_82:T2

|‘€3:T3 1o = T3

Fifelezegz'l-z

L g LY N =

Compute el’s type: 11
Check that 11 is Bool

Compute e2’s type: 12
Compute e3’s type: 13

Check that e2’s type equals
e3d’s type

Assign (if el e2 e3) e2'’s
type

“Bidirectional” judgements: better for
specifying algorithms

& = “check” the type

= = “compute” the type

A bidirectional If rule

- 31 — BOOl 1. Check that el has type Bool
2. Compute e2’'stype as T
- 32 =T 3. Check that e3 has type 1
- 63 N 4. Assign (if el e2 e3) type T

Fifeeye; =7

“Bidirectional” judgements

& = “check” the type

= = “compute” the type

But now we have two judgements!

Another bidirectional If rule

- 31 — BOOl 1. Check that el has type Bool
2. Compute e2’'stype as T
- 32 T 3. Check that e3 has type 1
- 63 N 4. Assign (if el e2 e3) type T

Fifeeye; &1

LAB, part 1

e Develop bidirectional rules for our language. Focus on the
expressions first.

e [t might help to first review the “conventional” type rules.

 Make sure to come up with both “check” and “compute”
versions of the bidirectional rules.

LAB, part 2

« Use your rules to implement a “compute” type checking
function.

